
Design and Evaluation of the GeMTC Framework for
GPU-enabled Many-Task Computing

Scott J. Krieder,∗ Justin M. Wozniak,† Timothy Armstrong,§ Michael Wilde†‡
Daniel S. Katz,‡ Benjamin Grimmer,∗ Ian T. Foster,§†‡ Ioan Raicu∗†

∗Department of Computer Science, Illinois Institute of Technology
†Mathematics and Computer Science Division, Argonne National Laboratory

§Department of Computer Science, University of Chicago
‡Computation Institute, University of Chicago & Argonne National Laboratory

ABSTRACT
We present the design and first performance and usability
evaluation of GeMTC, a novel execution model and run-
time system that enables accelerators to be programmed
with many concurrent and independent tasks of potentially
short or variable duration. With GeMTC, a broad class
of such “many-task” applications can leverage the increas-
ing number of accelerated and hybrid high-end computing
systems. GeMTC overcomes the obstacles to using GPUs
in a many-task manner by scheduling and launching inde-
pendent tasks on hardware designed for SIMD-style vector
processing. We demonstrate the use of a high-level MTC
programming model (the Swift parallel dataflow language)
to run tasks on many accelerators and thus provide a high-
productivity programming model for the growing number of
supercomputers that are accelerator-enabled. While still in
an experimental stage, GeMTC can already support tasks of
fine (subsecond) granularity and execute concurrent hetero-
geneous tasks on 86,000 independent GPU warps spanning
2.7M GPU threads on the Blue Waters supercomputer.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming

Keywords
Many-task computing; GPGPU; CUDA; Accelerators; Hy-
brid execution; Workflow; Programming models; Execution
models.

1. INTRODUCTION
This work explores methods for, and potential benefits of,

applying the increasingly abundant and economical general-
purpose graphics processing units (GPGPU) to a broader
class of applications. It extends the utility of GPGPU from
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the class of heavily vectorizable applications to irregularly-
structured many-task applications. Such applications are
increasingly common, stemming from both problem-solving
approaches (i.e., parameter sweeps, simulated annealing or
branch-and-bound optimizations, uncertainty quantification)
and application domains (climate modeling, rational mate-
rials design, molecular dynamics, bioinformatics).

In many-task computing (MTC) [1, 2], tasks may be of
short (even subsecond) duration or highly variable (ranging
from milliseconds to minutes). Their dependency and data
passing characteristics may range from many similar tasks to
complex, and possibly dynamically determined, dependency
patterns. Tasks typically run to completion: they follow
the simple input-process-output model of procedures, rather
than retaining state as in web services or MPI processes.

Efficient MTC implementations are now commonplace on
clusters, grids, and clouds. In recent years we have ex-
tended MTC to applications on homogeneous supercom-
puters, using tools such as Falkon [3], Swift [4], JETS [5],
and Coasters [6]. Other programming models and tools
that support MTC include MapReduce, volunteer comput-
ing [7], SLURM [8], and Cobalt [9], which allow super-
computer tasks to be subdivided into asynchronous sub-
tasks [10]. All these approaches can benefit from the MTC-
enabling accelerator work we describe here. The contribu-
tions of this work are as follows:

• Design and implementation of GeMTC, a framework
enabling MTC workloads to run efficiently on NVIDIA
GPUs.

• Improved dynamic GPU memory management, pro-
viding efficient scaling and a 10x improvement over
native CUDA dynamic memory management.

• Integration of GeMTC with Swift, enabling a broad
class of dataflow-based scientific applications, and im-
proving programmability for both hybrid multicore hosts
and extreme scale systems. Work is load balanced
among large numbers of GPUs.

• Performance evaluation on synthetic benchmarks and
a proxy code representing molecular dynamics simula-
tion workloads.

This paper is organized as follows: Section 2 describes the
challenges of many-task computing on GPGPUs. Section 3
describes the GeMTC framework and its underlying archi-
tecture. Section 4 describes Swift and its integration as a
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Figure 1: Diagram of GPU architecture hierarchy.

GeMTC programming model. Section 5 presents a perfor-
mance evaluation, and Section 6 discusses related work. We
summarize our contributions in Section 7 and briefly discuss
related work.

2. CHALLENGES OF MANY-TASK COM-
PUTING ON GPGPUS

Our GeMTC work is motivated by the fact that with cur-
rent mainstream programming models, a significant portion
of GPU processing capabilities underutilized by MTC work-
loads. We advocate sending a larger number of smaller, con-
current, independent tasks to a GPU. The results presented
here indicate that this approach enables higher utilization
of GPU resources, greater concurrency, and hence higher
many-task throughput.

2.1 NVIDIA GPUs and GPGPU Computing.
General-purpose computing on graphics processing units

(GPGPU) allows a host CPU to offload a wide variety of
computation, not just graphics, to a graphics processing
unit (GPU). GPUs are designed for vector parallelism: they
contain many lightweight cores designed to support paral-
lel bulk processing of graphics data. GPGPU leverages this
parallel architecture for nongraphic computations such as
matrix multiplication. In the context of this paper, all ref-
erences to GPU refer to this GPGPU approach. In addition
to application speedup, other benefits to leveraging accel-
erators include power efficiency (improved Flops/watt) and
cost savings (improved Flops/$).

As shown in Figure 1, a NVIDIA GPU (which dominates
the GPGPU and HPC marketplace) is comprised of many
Streaming Multiprocessors (SMXs). A SMX contains many
warps, and each warp provides 32 concurrent threads of ex-
ecution. All threads within a warp run in a Single Instruc-
tion Multiple Thread (SIMT) fashion. As we describe below,
GeMTC schedules independent computations on the GPU
at the warp level, a level of independent task concurrency
not provided by any mainstream GPU programming model.

Our GeMTC work targets the latest generation of NVIDIA
GPUs, specifically the Kepler K20X. This device has 14
SMXs with 192 cores per SMX, a maximum of 168 warps,
and a total core count of 2,688. MTC workloads that send
only single tasks, or small numbers of large tasks, to acceler-
ator devices observe near-serialized performance, and leave
a significant portion of device processor capability unused.

Ousterhout et al., [11] make a compelling argument for the
pervasive use of tiny tasks in compute clusters. We apply a
similar argument to motivate the GeMTC model of running
many small independent tasks on accelerators. Driven by
this tiny-task motivation, GeMTC provides an architecture
for “overdecomposition” [12] of accelerator-resident tasks,
which can then be tightly packed into a GPU to maximize
efficiency and minimize time to solution. While Swift load
balances tasks and applies compiler optimizations in sup-
port of overdecomposition, the user must write applications
with suitably fine-grained tasks.

2.2 Mainstream GPU Support for MTC
The dominant CUDA and OpenCL GPGPU programming

models both provide extensions to traditional programming
languages such as C with added API calls to interact with
accelerators. CUDA is supported by NVIDIA and works on
NVIDIA GPUs. OpenCL is based on an open standard that
aims to provide improved portability across a variety of ac-
celerators and other compute devices. OpenACC is a newer
pragma-based technology that is gaining momentum. As in
OpenMP, OpenACC programmers provide hints to the com-
piler where they believe a computation would benefit from
being offloaded to an accelerator. OpenACC is an open stan-
dard and aims to provide the portability of OpenCL while
requiring less detailed knowledge of accelerator architecture
than is required in CUDA and OpenCL programming. In
many cases OpenACC may require significantly less coding,
but early measurements (e.g., by Wienke et al. [13]) suggest
that OpenACC is not yet capable of delivering equivalent
performance.

Concurrent Kernels [14] is a CUDA feature that enables
the developer to launch parallel work on a GPU. However,
the maximum number of concurrent kernels is limited to
32, far less than the number of 168 independent warps pro-
vided by the latest Kepler GPUs. HyperQ and Dynamic
Parallelism [15], recent CUDA enhancements introduced by
NVIDIA with the Kepler architecture, are a step toward
MTC support. HyperQ allows more parallel work to be
sent to the GPU, while Dynamic Parallelism allows threads
to spawn more threads on the device. The current model
of GeMTC and Swift relies on communication between the
CPU and GPU to drive tasks to and from the Swift script. If
a task sent to GeMTC from Swift was represented by com-
pact code and could be decomposed even further (e.g., loop
unrolling) it is possible that GeMTC could utilize Dynamic
Parallelism to dynamically launch new tasks and process the
parent task with even more improved performance, but we
leave that as future work. Most other programming models,
however, still treat the GPU as a solution to large vector-
oriented SIMD computations and do not adequately support
the potential for speedup of many-task applications.

A primary motivation for our work on GeMTC is that
none of these mainstream accelerator programming mod-
els provides the flexible support for independent concurrent
tasks required by many-task applications. In order to ef-
fectively utilize an accelerator, MTC applications with com-
plex task dependencies need task results rapidly returned
from device to host so that the application can process its
dataflow-driven dependencies. To the best of our knowledge,
no solution prior to GeMTC offers this capability.

Figure 2(A) illustrates why many-task computing work-
loads experience low efficiencies through Concurrent Ker-



nels, the best available standard CUDA concurrency model
for independent tasks launched by the host. In this model,
tasks must be submitted at the same time, and no additional
tasks can be submitted until all tasks are complete. With
unbalanced task durations, a significant number of GPU pro-
cessor cores will be underutilized. In addition, to process
workflows with complex dependencies, the developer must
group tasks into batches and block on batch completion be-
fore executing dependent kernels, an inadequate approach
for supporting heterogeneous concurrent tasks. Figure 2(B)
demonstrates how GeMTC provides support for heteroge-
neous tasks by treating every warp worker as an indepen-
dently operating SIMD compute device. Because the warps
are operating independently they are able to pick up work
immediately rather than block on other warps for comple-
tion. Figure 2(C) demonstrates how overdecomposition can
be utilized by GeMTC to pack tiny tasks neatly into the
GPU, maximizing device core utilization and reducing ap-
plication time to solution.

3. GEMTC ARCHITECTURE
Given that our target test bed consisted of NVIDIA GPUs

and that we wanted to examine the GPU at the finest gran-
ularity possible, we opted to implement our framework us-
ing CUDA. This decision allowed us to work at the finest
granularity possible but limited our evaluation to NVIDIA
based hardware. While GeMTC was originally developed
on NVIDIA CUDA devices, its architecture is general, and
has also been implemented on the Intel Xeon Phi [16]. The
Phi, however, represents a different accelerator architecture,
meriting separate study, and is not addressed in this paper.

Figure 3 shows a high-level diagram of GeMTC driven
by tasks generated by the Swift parallel functional dataflow
language (described in Section IV). GeMTC launches a dae-
mon on the GPU that enables independent tasks to be mul-
tiplexed onto warp-level GPU workers. A work queue in
GPU memory is populated from calls to a C-based API,
and GPU workers pick up and execute these tasks. After a
worker has completed a computation, the results are placed
on an outgoing result queue and returned to the caller.

3.1 Kernel Structure and Task Descriptions
A key element of GeMTC is the daemon launched on the

GPU, named the Super Kernel, which enables many hard-
ware level workers (at the warp level) on the GPU. A work
queue in GPU memory is populated from calls to a C API,
and GPU workers pick up and execute these tasks. After a
worker has completed a computation, the results are placed
on an outgoing result queue and returned to the caller.

Within traditional GPU programming, a user defined func-
tion that runs on the GPU is called a kernel. An application
may define many GPU kernels, and application logic may be
written to execute some or all kernels in parallel. These con-
current kernels are a key technology in the GeMTC frame-
work. Once the GeMTC framework is initialized, the Super
Kernel daemon is started, the memory management system
is set up, and calls can begin to Application Kernels (App-
Kernels). The Super Kernel gathers hardware information
from the GPU and dynamically starts the maximum num-
ber of workers available on that GPU. A worker consists of a
single warp, and therefore the maximum number of workers
is equal to the maximum number of warps.
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Figure 2: GeMTC FIFO scheduler processes tasks
as soon as they are available, rather than blocking
on batches for completion. The warps required to
execute cases (B) and (C) are provided by all the
streaming multiprocessor’s within the shaded area
of (A). While the hardware available remains the
same, the number of parallel channels is increased
for the amount of concurrent parallel work.



Figure 3: Flow of a task in GeMTC.

AppKernels are the computations that are executed by a
GeMTC worker. The AppKernels are modular in design,
and users can quickly contribute to the AppKernel Library
by writing their own AppKernels based on pre-existing tem-
plates. A major appeal of the GeMTC framework is the
decomposition of the GPU programming model. Instead of
an application launching hundreds or thousands of threads,
which could quickly become more challenging to manage,
GeMTC AppKernels are optimized at the warp level, mean-
ing the programmer and AppKernel logic are responsible for
managing only 32 threads in a given application. Further-
more, run-time logic can be used to control concurrency of
tasks to ensure that GPU cores are kept utilized without
exhausting the GPU memory.

The Task Description is a C struct that contains rele-
vant information for executing an AppKernel as a task on
GeMTC. The Task Description is passed from a client via
the GeMTC API (e.g., by Swift) to the GPU and queued
with parameters on the device to the input queue or queued
with task results on the outgoing result queue.

Figure 4 shows how a sample AppKernel could be writ-
ten to compute a naive square matrix multiplication through
GeMTC. Swift stubs have marshaled AppKernel parameters
into a single boxed parameter. Therefore, after calibrating
for warp size, the first step is to unbox the parameters. Af-
ter executing an algorithm optimized for the warp size, the
result is stored in a location identified from unboxing the
input parameters. The result is then placed on an outgoing
result queue, and the warp is ready to pick up new work.

3.2 GeMTC API
The GeMTC API is a C-based API which consists of eight

major functions identified in Table 1. Figure 5 uses a sim-
ple molecular dynamics (MD) example to demonstrate how
a user can leverage the GeMTC API to launch a simula-
tion on the GPU. For the MD example, the user defines
the initial universe of molecules as a parameter to the MD
function. Once these parameters have been transferred into
GPU memory the user pushes the task to the GPU along
with all the information needed to create the task description
on the device. The push operation contains, as parameters,
the four pieces of data necessary to construct the task de-
scription; in this case, TaskType = MDLite, TASK ID is set
to a unique integer value (for tracking the task throughout
its lifetime), numThreads = 32, and *params = a pointer to
device memory where the task parameters are stored.

1 __device__ void MatrixMultiply(void *boxed_input)
2 {
3 // calibrate for warp size
4 int warp_size = 32;
5 int thread = threadIdx.x % warp_size;
6 // unbox host parameters
7 float* inputParams = (float*)boxed_input;
8 int matrixWidth = inputParams[0];
9 int matrixSize = matrixWidth * matrixWidth;

10 float *matrixA = inputParams+1;
11 float *matrixB = matrixA + matrixSize;
12 float *matrixOut = matrixA + 2 * matrixSize;
13 // compute Matrix Multiplication
14 for (unsigned int i = thread; i < matrixWidth;
15 i=i+warp_size){
16 for (unsigned int j = 0; j < matrixWidth; j++) {
17 float sum = 0;
18 for (unsigned int k = 0; k < matrixWidth; k++) {
19 float a = matrixA[i * matrixWidth + k];
20 float b = matrixB[k * matrixWidth + j];
21 sum += a * b;
22 }
23 // result location from input parameters
24 matrixOut[i * matrixWidth + j ] = sum;
25 }
26 }
27 }

Figure 4: GeMTC Mat-Mul AppKernel

Table 1: GeMTC API
API Call Functionality Provided

gemtc(Setup/Cleanup) (Start/Stop) GeMTC
gemtc(Push/Poll) (Submit/Return) Tasks

gemtcMemcpyHostToDevice Memory Copy
gemtcMemcpyDeviceToHost Memory Copy

gemtcGPU(Malloc/Free) (Allocate/Free) Memory

At this point the user can begin polling for a result. The
precompiled MD AppKernel already knows how to pack and
unpack the function parameters from memory; and once the
function completes, the result is packed into memory and
placed on the result queue. When the gemtcPoll function
returns a result, the user can then unpack the memory and
move to the next operation. The gemtcPoll function does
not block on a specific task, and it automatically pops any
completed task(s) off the result queue. This strategy is ex-
plained in further detail in the Task Bundling subsection.
In addition, the example shown in Figure 5 is specific to
users leveraging the C API. It is expected that end users
will utilize high-level Swift scripts to launch their tasks on
GeMTC. The calls described above are implicitly handled by
the GeMTC and Swift integration, as explained in further
detail in Section 4.

3.3 Queues, Tasks, and Memory Management
GeMTC manages two queues on the device. The Incom-

ing Work Queue is populated by calls to the GeMTC API
and contains tasks that are ready to execute. The tasks in
this queue contain a TaskDescription and the necessary pa-
rameters to execute the task. Both in-memory queues are
configured as circular linked-lists with pointers indicating
the front and rear of the queue. When a worker picks up
a task, it will dequeue from the front, and any new work
is placed at the rear. Figure 6 demonstrates how workers
interact with the queues.



1 # include ”gemtc.cu”
2 main(){
3 // Start GeMTC
4 gemtcSetup(QUEUE_SIZE);
5 // Allocate device memory
6 device_params = gemtcGPUMalloc(MALLOC_SIZE);
7 // Populate device memory
8 gemtcMemcpyHostToDevice(device_params,
9 host_params, MALLOC_SIZE);

10 // Push a task to the GPU
11 gemtcPush(MD_Lite, NUM_THREADS,
12 TaskID, device_params);
13 // Poll for completed results
14 gemtcPoll(TaskID, pointer);
15 // Copy back results
16 gemtcMemcpyDeviceToHost(host_params,
17 pointer, MALLOC_SIZE);
18 // Free GPU memory
19 gemtcGPUFree(pointer);
20 // Shutdown GeMTC
21 gemtcCleanup();
22 }

Figure 5: Code sample of GeMTC API.

Figure 6: GPU Workers interacting with queues.

The GeMTC framework requires efficient device memory
allocation on a per task basis. Each task enqueued requires
at least two device allocations: the first for the task itself
and the second for parameters and results. The existing
CUDA memory management system was not designed for a
large number of independent memory allocations. With tra-
ditional CUDA programming models the current best prac-
tice is to allocate all memory needed by an application at
launch time and then manually manage and reuse this mem-
ory as needed.

To reduce the large overhead of individual memory alloca-
tions for MTC workloads, GeMTC includes a sub-allocator
designed to efficiently handle many requests for dynamic al-
location. The sub-allocator uses the existing CUDA malloc
to allocate large contiguous pieces of device memory, allo-
cating more as needed. Then pointers to these free chunks
and their sizes are stored in a circular linked list on the
CPU (see Figure 7). This list is ordered by increasing de-
vice address to allow for easy memory coalescing of adjacent
memory chunks.

Figure 7: Memory mapping of free memory available
to the device.

Figure 8: Result of gemtcMalloc on free memory.

When a GeMTC memory allocation request is sent from
the host to the GPU, the sub-allocator will traverse the list
and select the first chunk of free device memory meeting
the allocation requirements. Figure 8 demonstrates how the
header is then updated to reflect the remaining free device
memory available in that chunk. This operation runs in the
same order of time as a single memory copy to the device.

Upon freeing device memory, the header is read to iden-
tify the size of the chunk. Then it is added to the list of
free memory in the correct location. If there is any free con-
secutive memory, the chunk is coalesced to provide a single
larger contiguous chunk of memory. The operation to free
device memory takes roughly the same amount of time as
reading the header (i.e., a device memory copy).

Both malloc() and free() within GeMTC’s memory man-
agement run in O(n), where n is the length of the free mem-
ory list. In addition, the size of the list is proportional to
the amount of memory fragmentation since each element is
recorded as a separate chunk of memory. Because malloc
and free both need to write and read to the GPU memory,
these operations may scale poorly under workloads with high
fragmentation. However, the MTC workloads we examine
show no signs of high fragmentation. The original cudaMal-
loc ran in ∼100 microseconds, and our gemtcMalloc runs in
∼10 microseconds.

To optimize the GeMTC framework for fine-grained tasks,
we have implemented a task-bundling system to reduce the
amount of communication between the host and GPU. The
main bottleneck for obtaining high task throughput through
GeMTC is the latency associated with writing a task to the
GPU DRAM memory. This bundling system as shown in
Figure 9 creates a buffer of tasks that need to be written to
the GPU, and flushes it periodically or when it is full. This



Figure 9: GeMTC implicitly bundles tasks to effi-
ciently utilize PCI bandwidth and latency.

whole buffer can be written to the device in a single copy.
Similarly, results of finished tasks can be read from device
memory in bulk. The performance improvements of this
optimization are substantial. With no bundling (buffer size
of one), GeMTC is able to run approximately 6,000 tasks per
second on a single GPU. With bundling of 100 task groups,
we achieve 22,000 tasks per second, more than a 3x increase
in throughput. This optimization allows GeMTC to support
many more fine-grained tasks.

4. SWIFT: DATAFLOW EXECUTION AND
PROGRAMMING MODEL FOR MTC

Swift [4] is an implicitly parallel functional dataflow pro-
gramming language that is proving increasingly useful to
express the higher-level logic of scientific and engineering
applications. In this work, we enable Swift to serve as a
high-level, high-productivity programming language for hy-
brid CPU/GPU applications, paving the way for a seamless
programming environment for extreme-scale systems com-
posed of hybrid, accelerated nodes.

Many important application classes and programming tech-
niques that are driving the requirements for such extreme-
scale systems include branch and bound, stochastic pro-
gramming, materials by design, and uncertainty quantifi-
cation. All these classes can be productively expressed as
many-task dataflow programs. The dataflow programming
model of the Swift parallel scripting language can elegantly
express, through implicit parallelism, the massive concur-
rency demanded by these applications while retaining the
productivity benefits of a high-level language. Swift pro-
grams can be written with little or no experience in parallel
programming, making it a productive language for scientists
and engineers to leverage parallel systems.

Swift was originally developed as a scripting language for
executing scripts composed from the execution of ordinary
application programs on distributed systems such as clus-
ters, grids, and clouds [17]. In this mode, a Swift inter-
preter, written in Java, executes on a single (possibly multi-
core) host, and sends work to distributed systems using a
variety of “providers” that interface with remote systems.

Figure 10: Swift/T stack including GeMTC.

When using its own resource provisioner [6] Swift is capa-
ble of sending approximate 500 tasks per second to a set of
resources. When using Falkon [3], Swift achieved over 1,000
tasks per second.

To overcome the limits of this centralized single-node pro-
gram evaluation model, a new Swift implementation named
Swift/T [18] was implemented to achieve extreme scalabil-
ity. Its innovations are a dataflow engine that provides
highly parallel, distributed-memory evaluation; a data store
that enables distributed access to memory-resident objects;
and a load balancer for scalable low-latency task distribu-
tion to systems with millions of cores. While the original
Swift language could only specify the execution of applica-
tion programs as its leaf tasks, and only return files from
these tasks, Swift/T enables finer-grained programming of
in-memory functions that pass in-memory data objects. Per-
formance (and granularity) has been improved by four orders
of magnitude beyond the centralized Swift system, to > 15M
tasks/sec (achieved on 128K integer cores of Blue Waters).
This enables Swift to express a far broader set of applica-
tions, and makes it a productive coordination language for
hybrid CPU+accelerator nodes and systems.

GeMTC Integration with Swift
The integration with Swift provides many mutual benefits
for both Swift and GeMTC. The four boxes on the left side
of Figure 10 show the original Swift/T stack before adding
GeMTC support. Users write high-level Swift scripts that
are compiled by STC [19] into code which is then executed
by Turbine [20]. The final box on the right illustrates how
GeMTC fits into the Swift/T stack. Once code has been
generated and ready for execution, the Turbine runtime uses
the GeMTC API to establish memory for tasks, move tasks
into the GPU, and return results from the GPU back to the
high level Swift script. Currently each GPU is dedicated to
one Swift application. Swift provides logging information
for all application runs to allow programmers to pinpoint
errors and evaluate safety/reliability issues.

All the GeMTC API calls are managed dynamically within
the Turbine worker node of the Swift runtime environment.
Thus, the user’s Swift application can simply call any func-
tion mapped to an AppKernel from the high level Swift pro-
gram. Figure 11 shows an example of how the user would
write a Swift application to utilize a set of GPUs through
GeMTC.

Data transfers overlap with ongoing GPU computations
implicitly and automatically. And because the GeMTC API
calls are handled at the Turbine worker level, the Swift pro-
grammer is freed from the burden of writing complex mem-



1 import gemtc;
2 main
3 {
4 float input_array[];
5 float result_array[];
6
7 input_array = populate_array(SIZE);
8 result_array = gemtc_mdlite(
9 MD_CONFIGURATIONS, input_array);

10 }

Figure 11: Swift script launching GeMTC.

ory management code for the GPU. Overlapping data trans-
fer with compute is a common way to achieve increased ac-
celerator performance, and the GeMTC + Swift stack pro-
vides this functionality automatically.

Integrating GeMTC with Swift allows GeMTC to launch
on very large sets of cluster nodes with very low overhead.
Swift automatically performs load balancing across all worker
CPUs and across nodes, while GeMTC is optimized from the
CPU-GPU level down to the GPU warps.

5. PERFORMANCE EVALUATION
This section evaluates the GeMTC framework with a set

of AppKernels from the GeMTC AppKernel Library. App-
Kernels are CUDA device functions that have been tuned to
deliver high performance under MTC workloads. AppKer-
nels have been precompiled into the GeMTC framework.

We work with a lightweight molecular dynamics simula-
tion called MDLite. We first evaluate MDLite at the level
of a single GPU warp and then over all warps in the GPU.
We conclude with an analysis of MDLite over multiple XK7
nodes and examine a set of simple adder benchmarks to
highlight throughput and efficiency.

The target test bed for this work is the Blue Waters HPC
resource at NCSA. Blue Waters contains ∼20K Cray XE6
CPU based nodes and ∼4K Cray XK7 GPU nodes. While
future work aims to address heterogeneous scheduling, this
work focuses on the XK7 nodes. Each node contains a single
AMD 6276 Interlagos Processor with 8 Bulldozer cores and
16 integer scheduling units. In addition, each node contains
32 GB of memory. Each XK7 node is equipped with a Kepler
K20X GPU with 6 GB of memory, 2688 CUDA cores, a
peak GPU performance of 1.31 TF (double precision), and
a memory bandwidth of 200 GB/s [21].

5.1 Molecular Dynamics
MDLite is a simple molecular dynamics simulation, based

on an educational code [22]. The user specifies the number of
particles in a “universe” along with their starting positions,
the number of dimensions, and a starting mass. MDLite
runs a simulation that determines how the potential and ki-
netic energy in the system changes as the particles change
position. MDLite then simulates a particle system with cou-
pled, time-step-discretized differential equations. A MDLite
task consists of loading the simulation into GPU memory,
running the simulation, and returning the results to Swift.
The MDLite workflow may contain dependencies as demon-
strated in Figure 12, where simulations exchange data before
continuing execution. MDLite is an excellent proxy applica-
tion for Protlib-2 and InsEnds [23] and demonstrates data
movement and fine-grained task execution on accelerators.
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Figure 12: Diagram demonstrating execution model
for molecular dynamics with replica exchange.
Short simulation segments are run in an ensemble
with asynchronous data exchanges [24].

GPU computing traditionally involves managing thousands
of threads of execution. First, we scale down to show that
it is indeed possible to gain increased performance at a low
level using a varied of number of active threads within a
single warp. Figure 13 demonstrates that GeMTC is capa-
ble of scaling within a single warp. By varying the number
of active threads included in a warp computation, we prove
that for the right application it could indeed benefit from
the 32 threads in a GPU warp. In this figure, 1 thread
is a lower bound on performance, and 32 threads are the
maximum number of threads available within a single warp.
Figure 14 highlights the speedup obtained by varying the
level of concurrency for MDLite within a single warp of exe-
cution. While the walltime of MDLite successfully decreases
as more threads are added, the speedup obtained is signifi-
cantly less than ideal after 8 threads are active within a sin-
gle warp. While improved performance could certainly be
achieved with added development cycles of fine tuning, we
argue for the overdecomposition of large tasks into smaller,
easier-to-manage MTC tasks. By identifying the task gran-
ularity that observes the best combined performance of wall-
time and thread utilization, we can run many tasks of that
granularity on the GPU.

Scaling an application down to the level of concurrency
available within a single warp can provide the highest level of
thread utilization for some applications. Next, we evaluate
how efficient many of these independent warp workers are
when working in parallel across a single GPU.

Figure 15 evaluates a varied number of MDLite simula-
tions running over a K20X GPU. In this experiment a single
warp provides a baseline and lower bound on performance.
This baseline is achieved by running a single task on a single
warp and varying the input vector size from several hundred
elements to several thousand. The plot lines in Figure 15
represent active GPU workers in executing the MD applica-
tion, conveying GeMTC scalability from 1 to the maximum
number of GPU workers.

As more workers are added, there is increasingly higher
demand on the in-memory queues; specifically, the two locks
that keep each queue synchronized become bottlenecks for



Figure 13: GeMTC scales MD within a single warp
and achieves decreased walltime as the level of con-
currency within the computation is increased.

Figure 14: Speedup achieved with varied concur-
rency (1-32 threads) within a single warp, launching
MDLite tasks from 2,500 atoms to 19,200 atoms.

the system. We anticipate that implementing a lock-free
queueing system on the device will alleviate a significant
portion of the latency and provide improved performance;
this is left as future work.

We have shown GeMTC is capable of scaling down to man-
age threads both within a single warp and across multiple
warps within a single GPU. Next we highlight how the inte-
gration with Swift enables GeMTC to scale across multiple
XK7 nodes within Blue Waters. Figure 16 is a multinode
scaling experiment where the number of simulations is set
equal to the number of workers. At each data point there
are two times as many workers as the previous, so we run
twice as much work. In an ideal system without any over-
heads we would expect a flat line demonstrating the ability
to conduct the same amount of work at each step. Even
after 8 nodes we achieve 96% utilization. Future work aims
to evaluate our system at even larger scales on Blue Waters.

5.2 Throughput and Efficiency
Next, we evaluate GeMTC with a simple adder bench-

mark. The benchmark launches a series of additions on the
GPU, for which we have calculated expected runtimes. Af-

Figure 15: GeMTC utilization on the K20X running
MD codes with varied worker counts from 1 to 168.

Figure 16: GeMTC and MDLite scaling over 1344
workers on Blue Waters.

terwards, we can easily measure the efficiency and overhead
of our system: efficiency = (expected runtime/observed run-
time). Expected runtime is calculated during a short cali-
bration phase where kernel runtime is measured with and
without our framework.

First, a CPU version of the simple adder is executed through
Swift/T on XE6 nodes. The results shown in Figure 17 con-
firm that Swift/T is highly capable of driving fine-grained
work over many nodes on Blue Waters. In particular, tasks
with runtimes exceeding 10 ms observe high efficiencies well
over 10K processes (where 1 process is running per core) and
fits our target duration and scale for the GPU evaluation.

Secondly, we evaluate Swift on a single GPU equipped
node to calculate a per node throughput rate for GPU tasks.
Figure 18 highlights throughput rates for Swift and GeMTC
on a Kepler K20X. In this benchmark the maximum num-
ber of available GeMTC workers is enabled (168). Figure 19
demonstrates that Swift + GeMTC is capable of driving a
high throughput of fine grain GPU work over many nodes
on Blue Waters. As shown in Figure 19 we obtain ∼70% of
ideal throughput with 10,000-way concurrency. Next, we
evaluate GeMTC efficiencies on a single XK7 node with
workloads comprising varied task granularities. Figure 20
highlights the single-node efficiency of GeMTC running with



Figure 17: Fine-grained Swift CPU workloads on
Blue Waters, demonstrating the ability to drive fine-
grained workloads with high efficiency.

Figure 18: Swift driving GeMTC tasks on a Cray
XK7(K20X equipped) node of Blue Waters.

168 active workers per GPU. At a single node we continue
to observe high efficiencies for tasks with runtimes exceeding
∼150ms. In both Figure 19 and Figure 20 the tasks mea-
suring throughput are simple summations with small data
parameters (and thus include data movement overhead).

Figure 21 demonstrates an upper bound of GeMTC by
launching efficiency workloads on multiple GPU nodes with
only a single active GeMTC worker per GPU. We next en-
able 168 GeMTC warp workers per GPU (the maximum)
and evaluate the efficiency of workflows with varied task
granularities up to 86k individually operating GPU workers
of Blue Waters. After adding 167 additional workers per
GPU we do require longer lasting tasks to achieve high ef-
ficiency. We attribute this drop in performance to greater
worker contention on the device queues and the fact that
Swift must now drive 168 times the amount of work per

Figure 19: GeMTC + Swift Throughput over 10,000
GPU workers.

Figure 20: Single-node efficiency on Blue Waters for
parallel work with varied task granularities running
168 GPU workers.

Figure 21: GeMTC + Swift efficiency for varying
task granularities up to 512 nodes on Blue Waters
with a single GeMTC worker active per node.

node. In Figure 22 we observe that tasks exceeding ∼1 sec-
ond achieve high efficiency up to scales of 40K workers. Al-
though we have not yet identified the cause for this drop in
performance, we expect that the performance degradation
at extreme levels of concurrency comes from the loading
of shared libraries from the remote parallel filesystem. In
future work we will continue to improve systemwide perfor-
mance by reducing the reliance on dynamic loadable shared
libraries and through larger scale evaluation on all 4K XK7
nodes of Blue Waters.

Figure 22: Efficiency for workloads with varied task
granularities up to 86K independent warps of Blue
Waters. 168 active workers/GPU.



Figure 23: Microbenchmark measuring efficiency for
tasks with varied granularities on a variety of hard-
ware: a 1344-core NVIDIA GPU, a 60-core Intel
Xeon Phi, and a 48-core AMD Opteron SMP.

5.3 Preliminary MTC Xeon Phi Results
We have also gathered preliminary results for supporting

MTC workloads on the Intel Xeon Phi Coprocessor. As
shown in Figure 23 we can achieve the same level of efficiency
with shorter running tasks (50% shorter) on a Xeon Phi
compared with a GTX-680 NVIDIA GPU. We highlight the
fact that with GeMTC on its own we observe upwards of 90%
efficiency with tasks lasting 5 ms. The AMD Opteron has
an even higher level of improved performance. This means
that a fully general purpose framework would be capable
of launching tasks an order of magnitude faster. We will
continue to improve performance to ensure all components
of the system can keep up with these task dispatch rates.

6. RELATED WORK
Warp Level Execution. Hong et al. [25] developed and

evaluated methods that obtained 9X speedups of breadth-
first search in graphs over prior GPU implementations by en-
abling each warp to run independent threads and even mul-
tiple “virtual” threads. While it stopped short of the gener-
alized mechanism for managing independent per-warp tasks
presented here, it characterizes the memory access regimes
in which many-task programming of accelerators will pro-
vide effective speedup, and describes methods for integrating
SISD and SIMD code segments within warp-resident tasks
that can guide the implementation of GeMTC AppKernels.
Chen et al. observed how unbalanced task-based workloads
resulted in low utilization of CUDA hardware [26] and multi-
GPU systems [27]. While still not a general-purpose solu-
tion like GeMTC, our work could benefit from the lock-free
queueing system Chen described. While GeMTC is cur-
rently optimized for a single GPU per node we believe sup-
porting multi-GPUs on a single node would only require
launching additional Swift workers configured to target ad-
ditional accelerators.

Dataflow on Accelerators. PTask [28], by Rossbach et al.
aims to treat GPUs as compute devices from the view of the
Operating System. PTask supports the dataflow program-
ming model and provides several scheduling options for tasks
including priority, first-available, and data-aware. Unlike
Swift, PTask does not support dynamic DAGs. Dandelion

is built on top of PTask and cross compiles .NET code into
CUDA code that is then executed on the PTask runtime [29].

Accelerator Virtualization. Virtualization is another tech-
nique to decompose hardware. Ravi et al. present a frame-
work to enable GPU sharing amongst GPUs in the cloud [30].
Computing the affinity score allows the authors to determine
which applications can benefit from consolidation. Becchi et
al. extend the framework to provide additional abstractions
for GPU sharing while allowing isolation of concurrent appli-
cations [31]. Gupta et al. describe Pegasus [32], which aims
to improve GPU utilization through virtualization. The Pe-
gasus project runs at the hypervisor level and promotes GPU
sharing across virtual machines, while including a custom
DomA scheduler for GPU task scheduling.

Runtime Systems. StarPU [33] is a task-based runtime de-
signed to improve the programmability of accelerators while
maintaining efficiencies. StarPU does allow for data de-
pendencies and hints regarding task priorities, but GeMTC
provides a finer granularity by leveraging warps as work-
ers. Zhang et al. present GPU-TLS [34], a loop speculative
parallelization framework for decomposing large loops into
smaller pieces which are then executed in parallel by GPU
kernels. Chatterjee et al. describe a runtime [35] that allows
different tasks to execute on the same SM in a similar fashion
to GeMTC. However, their runtime schedules workers based
on the Concurrent Collections (CnC) model and leverages
work stealing among SM managed queues to execute tasks.
At startup their runtime treats every SM as a single worker,
but allows tasks to launch more tasks. Our work could ben-
efit from the idea of additional worker queues to reduce con-
tention. However, our model leverages Swift to manage the
dependencies of run-to-completion tasks that are assumed
to have already been decomposed to the finest granularity
possible. Not only does the Turbine engine within Swift
support data dependencies, but the execution of tasks is
based on the dataflow model. Added benefits of leverag-
ing Swift include access to the built-in load balancer ADLB,
and the ability to easily span multiple nodes. COSMIC [36]
is a middleware for multiprocessing on the Intel Xeon Phi.
The GeMTC implementation on the Xeon-Phi will benefit
greatly from avoiding memory and thread oversubscription,
as highlighted in this work.

Alternative Accelerator Programming Methods. Intelligent
compilers are another way to avoid low level accelerator de-
velopment and still gain high performance. If the compiler
is able to generate device code and parallel instructions,
the developer may opt to write sequential code and benefit
from accelerator speedup. OpenMPC [37] is a project that
takes OpenMP code and converts it to CUDA, thus enabling
many scientific applications already written in OpenMP to
take advantage of the accelerator. Other work aims to tar-
get accelerators directly from OpenMP [38]. Grophecy [39]
attempts to improve the process of migrating codes to the
GPU through the analysis of code skeletonization. Grophecy
can analyze CPU codes and determine whether they may
benefit from being moved to the GPU, saving valuable de-
velopment cycles. Singe [40] is a Domain Specific Language
compiler for combustion chemistry applications. GeMTC
could benefit from a Grophecy or Singe-like module for cre-
ating warp-optimized AppKernels and vice versa. MPI-
ACC [41] aims to provide integrated MPI support for ac-
celerators to allow the programmer to easily execute code
on a CPU or GPU.



7. CONCLUSIONS
We have presented GeMTC, a framework for enabling

MTC workloads to run efficiently on NVIDIA GPUs. The
GeMTC framework encompasses the entire GPU running
as a single GPU application similar to a daemon. The
GeMTC framework is responsible for receiving work from
a host through the use of the C API, and scheduling and
running that work on many independent GPU workers. Re-
sults are returned through the C API to the host and then to
Swift. The GeMTC API enables the framework to closely in-
tegrate with parallel scripting systems such as Swift/T. The
GeMTC framework simplifies the programming model of the
GPU by allowing GPUs to be treated as a collection of in-
dependent SIMD workers, enabling a MIMD view of the de-
vice. The novel sub-allocator implemented within GeMTC
allows for an efficient dynamic allocation of memory once
an application is running. In addition GeMTC provides an
alternative API call to cudaMalloc, achieving a speedup of
roughly 10x. GeMTC has a throughput of roughly 23K tasks
per second on a single node. Integration with Swift/T im-
proves programmability of accelerators, while demonstrating
the ability to increase scalability to many nodes with many
cores in clusters, clouds, grids, and HPC resources.

Our studies suggest that not every workload will achieve
increased performance with a fine-grained many-task model
on a GPU. Applications that can generate thousands of
SIMD threads may prefer to use traditional CUDA pro-
gramming techniques. GeMTC is currently optimized for
executing within environments containing a single GPU per
node, such as Blue Waters; but future work aims to ad-
dress heterogeneous accelerator environments. Under the
current configurations, users are required to write their own
AppKernels. While a user may use many preexisting App-
Kernel templates, a system to automatically tune CUDA/C
functions to AppKernels would streamline the development
process. We leave this for future work.

Future work also includes performance evaluation of di-
verse application kernels; analysis of the ability of such ker-
nels to effectively utilize concurrent warps; enabling of vir-
tual warps [25] which can both subdivide and span physical
warps; support for other accelerators such as the Xeon Phi;
and continued performance refinement.

8. ACKNOWLEDGEMENTS
The Blue Waters sustained-petascale computing project is

supported by the National Science Foundation (OCI 0725070)
and the State of Illinois. Blue Waters is a joint effort of
the University of Illinois at Urbana-Champaign and its Na-
tional Center for Supercomputing Applications. We grate-
fully acknowledge support from NSF ACI-1148443 (Swift)
and DOE DE-SC0005380 (ExM). Work by Katz was sup-
ported by NSF while working at the Foundation. Any opin-
ion, finding, and conclusions or recommendations expressed
in this material are those of the author(s) and do not neces-
sarily reflect the views of the National Science Foundation.
The information, data, or work presented herein was funded
in part by the Starr Foundation through its generous do-
nation to Illinois Institute of Technology. The content is
solely the responsibility of the authors and does not nec-
essarily represent the official views of the Starr Foundation.
The authors also recognize Dustin Shahidehpour and Jeffrey
Johnson for their contributions to GeMTC and MDLite.

9. REFERENCES

[1] I. Raicu, Z. Zhang, M. Wilde, I. Foster, P. Beckman,
K. Iskra, and B. Clifford, “Toward loosely coupled
programming on petascale systems,” in Proc. of 2008
ACM/IEEE Conf. on Supercomputing, ser. SC ’08.
Piscataway, NJ: IEEE Press, 2008, pp. 22:1–22:12.

[2] I. Raicu, Many-task computing: bridging the gap
between high-throughput computing and
high-performance computing. ProQuest, 2009.

[3] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and
M. Wilde, “Falkon: a Fast and Light-weight tasK
executiON framework,” in Proc. of the 2007
ACM/IEEE Conf. on Supercomputing (SC’07). New
York, NY, USA: ACM, 2007, pp. 43:1–43:12.

[4] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford,
D. S. Katz, and I. Foster, “Swift: A language for
distributed parallel scripting,” Parallel Computing,
vol. 37, pp. 633–652, 2011.

[5] J. M. Wozniak, M. Wilde, and D. S. Katz, “JETS:
Language and system support for many-parallel-task
workflows,” J. Grid Computing, vol. 11, no. 3, pp.
341–360, 2013.

[6] M. Hategan, J. Wozniak, and K. Maheshwari,
“Coasters: uniform resource provisioning and access
for scientific computing on clouds and grids,” in Proc.
Utility and Cloud Computing, 2011, pp. 114–121.

[7] D. P. Anderson, “Boinc: A system for public-resource
computing and storage,” in Proc of 5th IEEE/ACM
Intl. Workshop on Grid Computing. IEEE, 2004.

[8] A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm:
Simple linux utility for resource management,” in Job
Scheduling Strategies for Parallel Processing.
Springer, 2003, pp. 44–60.

[9] N. Desai, “Cobalt: an open source platform for hpc
system software research,” in Edinburgh BG/L System
Software Workshop, 2005.

[10] IBM, “Sub-block jobs,” in IBM System Blue Gene
Solution: Blue Gene/Q System Administration, 2013,
pp. 80–81, Sec. 6.3.

[11] K. Ousterhout, A. Panda, J. Rosen, S. Venkataraman,
R. Xin, S. Ratnasamy, S. Shenker, and I. Stoica, “The
case for tiny tasks in compute clusters,” in Proc. of the
14th USENIX Conf. on Hot Topics in Operating
Systems. USENIX Association, 2013, pp. 14–14.

[12] L. V. Kale and G. Zheng, “Charm++ and ampi:
Adaptive runtime strategies via migratable objects,”
Advanced Computational Infrastructures for Parallel
and Distributed Applications, pp. 265–282, 2009.

[13] S. Wienke, P. Springer, C. Terboven, and D. an Mey,
“OpenACC - first experiences with real-world
applications,” in Euro-Par 2012 Parallel Processing.
Springer, 2012, pp. 859–870.

[14] NVIDIA Inc., “CUDA C Programming Guide
PG-02829-001 v5.5, Section 3.2.5, Asynchronous
Concurrent Execution,” 2013.

[15] NVIDIA Inc. , “CUDA C Programming Guide
PG-02829-001 v5.5, Appendix C, Dynamic Parallelism
Execution,” 2013.

[16] J. Johnson, S. J. Krieder, B. Grimmer, J. M. Wozniak,
M. Wilde, and I. Raicu, “Understanding the costs of
many-task computing workloads on intel xeon phi



coprocessors,” in 2nd Greater Chicago Area System
Research Workshop (GCASR), 2013.

[17] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von
Laszewski, V. Nefedova, I. Raicu, T. Stef-Praun, and
M. Wilde, “Swift: Fast, reliable, loosely coupled
parallel computation,” in Services, 2007 IEEE
Congress on, 2007, pp. 199–206.

[18] J. M. Wozniak, T. G. Armstrong, M. Wilde, D. S.
Katz, E. Lusk, and I. T. Foster, “Swift/T: Scalable
data flow programming for many-task applications,” in
Proc. CCGrid, 2013.

[19] T. G. Armstrong, J. M. Wozniak, M. Wilde, and I. T.
Foster, “Compiler optimization for data-driven task
parallelism on distributed memory systems,”
ANL/MCS-P5030-1013.

[20] J. M. Wozniak, T. G. Armstrong, K. Maheshwari,
E. L. Lusk, D. S. Katz, M. Wilde, and I. T. Foster,
“Turbine: A distributed-memory dataflow engine for
high performance many-task applications,” vol. 28,
no. 3, pp. 337–366, 2013, fundamenta Informaticae
128(3).

[21] NCSA, “Blue Waters User Portal,” 2014,
https://bluewaters.ncsa.illinois.edu/hardware-
summary.

[22] J. Burkardt, “MD - molecular dynamics,” 2013, http:
//people.sc.fsu.edu/˜jburkardt/cpp src/md/md.html.

[23] A. N. Adhikari, J. Peng, M. Wilde, J. Xu, K. F. Freed,
and T. R. Sosnick, “Modeling large regions in proteins:
Applications to loops, termini, and folding,” Protein
Science, vol. 21, no. 1, pp. 107–121, 2012.

[24] S. S. Hampton, P. Brenner, A. Wenger, S. Chatterjee,
and J. A. Izaguirre, “Biomolecular sampling:
Algorithms,test molecules, and metrics,” in New
Algorithms for Macromolecular Simulation, ser.
Lecture Notes in Computational Science and
Engineering, B. Leimkuhler, C. Chipot, R. Elber,
A. Laaksonen, A. Mark, T. Schlick, C. SchÃijtte, and
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